Font Handling in Troff With PostScript Devices

FONT HANDLING IN TROFF
WITH POSTSCRIPT DEVICES

GUNNAR RITTER

10/24/06

e

Heirloom Documentation Tools

<http://heirloom.sourceforge.net/doctools.html>

The basics

Heirloom #roff understands two ways to select PostScript fonts.
The current method can access PostScript font files directly. Fonts are
selected using an extended “fp” request. As simple examples,

fp 0 AG gdrg pfb
ft AG
Here is some text in Adobe Garamond Regular.

or

fp 0 AG AGaramondPro-Regular otf
ft AG
Here is some text in Adobe Garamond Pro Regular.

But it is also possible to have different names for the metrics and glyph
data files, as in

fp 0 AM mykerning.afm gdrg .pfb
ft AM
This text prints in Adobe Garamond using modified kerning.

The default higher-resolution “ps” PostScript device always uses AFM
files; it supports the conventional “.fp” request for backwards compatibil-
ity to select pre-installed fonts from the PDF base set.

With fonts selected by this method, localized input processing is per-
formed according to the LC_CTYPE environment variable, or according
to a document-specific value set by the “Ic_ctype” request:

\" Enable long request names.

.do xflag 3

\" de_DE.utf8 is for GNU libc; de. DE.UTF-8 works elsewhere.
dc_ctype de_DE.utf8

Deutscher Text mit <Anfithrungszeichen>

Sp
The first five small letters of the Greek alphabet: o fy 8 ¢

Note that any use of AFM, OpenTIype, or TrucType files requires that
the output of #roff is passed to the exactly matching version of dpost, i.c.
to the one that was delivered with the same release of this package. Send-
ing such #roff output directly to a print spooler that invokes a system ver-
sion of dpost will thus usually not work.

The historical method requires font tables to be generated manually. It
is still supported, and is still the default for the lower-resolution “post”
PostScript device, but it is not recommended anymore that it is used for
adding fonts. Localized input processing according to LC_CTYPE is not
available with this method.

Installing PostScript Type 1 fonts

Making additional fonts available is easy with the current method. If
you buy a PostScript Type 1 font for use with zroff, select the Windows
version. You will get a set of files from the vendor. Only two of them are
of interest for troff:

xxxxxxxx.afm
This is the metrics file. zroff accesses it to learn the widths of char-
acters in the font.

xxxxxxxx.pfb
This file contains the actual glyph data. #rgff does not really need
this file, but the printer or PDF converter does. In many cases, it
is most convenient to include the data directly into the .ps file gen-
erated, as in the examples above.

Create a directory to hold your fonts. For compatibility with future
versions of zroff, it is recommended that it is put outside the zroff hier-
archy /usr/ucblib/doctools; something below /usr/local may be a good

choice. For each font you want to install, copy or link both the AFM
and the PFB file into the directory. Set the TROFFONTS environ-
ment variable to this directory; if you have multiple font directories, you
can separate them in TROFFONTS by colons, just as in the PATH
variable for the shell, e.g. “TROFFONTS=/usr/local/share/fonts: /usr/
share/fonts export TROFFONTS”. Write the definition in your “.profile”
or a similar startup file to make it permanent. You can now use the fonts
with zroff. If you want to install more fonts later, it is sufficient to put
them into the font directory.

Installing OpenType or TrueType fonts

The procedure for OpenType and TrueType fonts is nearly the same as
for Type 1 fonts, except that there is only one file “FontName.otf” (or
“FontName.ttf”) with them that contains both metrics and glyph data.
Just copy this file to a directory given in the TROFFONTS path.

Using OpenType features

High-quality OpenType fonts may contain feature tables that allow spe-
cial typographic effects. For example, the Adobe Garamond Pro Regular
font contains titling capitals that can be mapped to the input range of reg-
ular capitals with the “feature” request in troff:

.do xflag 3

fp 1 R AGaramondPro-Regular otf
fp 0 T AGaramondPro-Regular otf
feature T +titl

REGULAR CAPITALS

.Sp

ft T

TITLING CAPITALS

To retrieve a list of features in an individual font that are available with
troff, use “otfdump —s font.otf”. Typical useful features are:

+c2sc converts capitals to small capitals

+case substitutions for use in combination with
text in all-capital letters

+onum old-style numerals

+pnum proportional (lining) numerals

+pnum +onum proportional old-style numerals

+smcp converts lower-case letters to small capitals

+smep +c2sc converts all letters to small capitals

+titl titling characters

+zero slashed zero

Features such as “aalt” or “ornm” which only map sets of very special
characters to different positions are normally not useful with zroff since
these characters can be accessed directly using “\[name]” escape sequences
anyway. To make an individual alternate character the default, the “.ftr” re-
quest can be used:

.do xflag 3

fp 2 I AGaramondPro-Italic otf

fer T Q\[Q.swash]

ft 1

Using a swash capital in the word “Qualiry.”

ceature mappings result in changes to the same internal data structures
Feat g It in changes to th ternal data struct
as the “ftr” request. It is thus possible to make adjustments to mappings
by using “ftr” after “.feature”, or to create personalized variants by using
“ftr” based on the data obtained from “otfdump —s”.
The “feature” request must still be active for a font when a character is
q
printed; disabling a feature with “feature F —feat” only works complete-
if all of its mappings are still in position. It is thus recommende a
ly if all of it g till tion. It is th ded that
the “feature” request is used only once for a font immediately after it has
been mounted, and that a font is mounted multiple times, each time for

enabling an individual feature set. Doing so has the additional advantage
that switching between features is conveniently possible using the “\f” es-
cape sequence.

Using fonts with old-style numerals

A Type 1 font with old-style numerals but otherwise standard characters
usually does not require any special mechanism. It can simply be mount-
ed, selected, and used.

Old-style numerals contained in OpenType fonts can be accessed conve-
niently by mapping them to the standard ASCII numbers with the “fea-
ture” request:

.do xflag 3

fp 1 R AGaramondPro-Regular otf

feature R +onum

The numerals 0 123 4 5 6 7 8 9 are in old-style.

Using fonts with small capital letters

Small capital fonts normally need letter space tracking. Thus e.g. to use
the Adobe Garamond small capital font, write something like

.do xflag 3

fp 0 SC gdsc_____ pfb

track SC 1.2242

ft SC

THIS TEXT PRINTS IN SMALL CAPITALS.

With an OpenType font, the “feature” request is useful again:

.do xflag 3
fp 0 SC AGaramondPro-Regular otf

feature SC +smcp

track SC 1.3243

ft SC

THIS TEXT PRINTS IN SMALL CAPITALS.

Using a combination of expert and standard fonts for small capitals

A Type 1 expert font contains small capital letters but no upper-case
capital letters. Since it would be very inconvenient to change the font ex-
plicitly for each upper-case letter, the fallback sequence is useful in this
case. The expert font is selected as text font, but for each upper-case let-
ter encountered, zroff changes automatically to the standard font:

.do xflag 3

fp1Rgdrg_ pfb

fp OE gerg___ pfb

track E1.2242

fallback E R

ft E

THIS TEXT PRINTS IN SMALL CAPITALS.

For OpenType fonts, all small capital letters are contained within the
base font, and the “smcp” feature accesses them as shown above.

Using a combination of expert and standard fonts for old-style numerals

This also uses the fallback sequence, but since the standard numerals are
present in the standard font, they have to be hidden first so that zroff does
not select them:

.do xflag 3
fp 1 R gdrg pfb
fp 0 E gerg pfb

fallback R E
.hidechar R 0123456789
The numerals 0 123 4 5 6 7 8 9 are in old-style.

Using the expert font for both small capitals and old-style numerals

The examples above can also be combined. Since the “.track” request
does not affect the tracking of fonts that are selected by the fallback se-
quence, it is sufficient to mount each font once:

.do xflag 3

fp1Rgdrg pfb

fp OE gerg__ pfb

fallback R E

fallback E R

track E1.2242

.hidechar R 0123456789

The numerals 0 123 4 5 6 7 8 9 are in old-style.
.br

ft E

BuT THIS TEXT PRINTS IN SMALL CAPITALS.

Using the expert font for ligatures

PostScript Type 1 fonts usually do not contain ligatures for ff, fli, and fil
in the base font; an expert font delivers them in addition. Automatic sub-
stitution of such ligatures can be enabled using the “.flig” request in com-
bination with the fallback sequence:

.do xflag 3
fp1Rgdrg pfb
fp OE gerg__ pfb
fallback R E

flig R £ \(FF £i \(Fi fF1 \(El

effective office offline

OpenType fonts contain all available ligatures in the base font, so no
special procedure needs to be applied with them.

Defining additional ligatures

Fonts may provide ligatures beyond the five standard #roff ones. They
are not activated by default regardless of any definitions in the font met-
rics files, but can be enabled individually as desired; #roff will then replace
sequences of characters automatically with them as with the standard lig-
atures. For example, Adobe Garamond Premier Pro contains ligatures for
use with the historic “{” letter variant:

.do xflag 3

fp 1 R GaramondPremrPro otf

flig R {'\[longs_longs] {i \[longs_i] {{i \[longs_longs_i]
Ufe thefe ligatures for claflic typography.

troff splits ligatures in two parts when hyphenating words. It is thus nec-
essary that any part of a ligature that is not a single character is also de-
fined as a ligature, so “fl” and “fi” are prerequisites for “fIi”.

It is normally not advisable to enable ligatures with pecial display forms
using the “.flig” mechanism; they should be set manually as special char-
acters (“\[s_p]” in this case) at precise locations.

Choosing between multiple possible ligatures

If a font contains only two-character ligatures, there are two possibilities
for automatic ligature building with an input sequence that would form
a three-character ligature, e.g., “ffi” could be constructed as “fli” or “ffi”.
troff normally selects the first ligature available, so “ffi” would be the de-

fault. In many cases, the other choice would be aesthetically preferable;
this is the application for the “.fdeferlig” request:

.do xflag 3

fp 1 R GaramondPremrPro otf

flig R {'\[longs_longs] {i \[longs_i]

fdeferlig R {fi

Choofing the fecond ligature looks poflibly better.

Combining different fonts

Different fonts often have different visual sizes even if they are set in the
same nominal point size. Also fonts from different vendors are often based
on different standards for character heights. To adjust this, the “.fzoom”
request is available. As implied by this purpose, it only applies to charac-
ters that are actually in the current font, not to characters from another
font that have been selected using the fallback sequence.

.do xflag 3

fp 1 R AGaramondPro-Regular otf

fp 0 GI GillSansStd otf

fzoom GI .94

\f(GIGill Sans\fR must be adjusted to fit with Adobe Garamond.

The “fzoom” request affects all characters set in the respective font
on the current output line. To create single zoomed words, mount a font
twice under different names, but zoom it only once.

Spacing out individual words

Spacing out the characters of individual words is commonly done for
highlighting text e.g. with German blackletter faces; the “.track” request

5

can be used for this as well. Like “.fzoom”, “.track” applies to all charac-

ters in the respective font on an entire output line. Thus it is also neces-
sary to mount a font twice but to track it only once when it is used for
tracking individual words.

Setting text in all-capital letters

When setting text in all-capital letters, it is normally necessary to zoom
the font to a smaller size than that of the lower-case text surrounding it,
and to track it as well. Mounting the regular font a second time is the
most convenient way to handle this:

.do xflag 3

fp1Rgdrg_ pfb

fp 0 XC gdrg__ pfb

track XC 1.2242

fzoom XC .9

Regular text and \f(XCALL-CAPITAL TEXT\fP which ends.

Pairwise kerning

Pairwise kerning is enabled unless the —x0 option is given. The “kern”
request disables it. Kerning tables are initially read from the AFM, Open-
Type, or TrueType files; this default kerning only applies if two adjacent
characters are from the same font. A font-specific kerning table can be dis-
abled using the “.fkern” request.

There are two methods to adjust the kerning tables: In some cases, it
is most convenient to create a private copy of the AFM file and to adjust
the “KPX” entries in it. This has the advantage that the modified kerning
pairs are immediately available for use in other documents.

For OpenType or TrucType fonts, or for cases where this is not suitable
with Type 1 fonts, or not possible because the characters in the kerning
pair originate from different fonts, #roff provides the “kernpair” request:

10

.do xflag 3
fp1Rgdrg pfb
fp OE gerg__ pfb
fallback R E

.hidechar R 0123456789
.kernpair E O R / 50
kernpair R / E 1 —90
.kernpair E 1 R / 40
kernpair R / E 2 —80
o/1/2

In this example, old-style numerals from Adobe Garamond Expert are
mixed with the slash character from Adobe Garamond Regular, and are
adjusted to achieve matching visual letter spacing.

Kerning of a character in any combination

It is sometimes useful to add a certain amount of space whenever a char-

acter appears, for example before “;” or “?”, or on the inner sides of guille-
mots in French/Swiss style. The “kernafter” and “kernbefore” requests

are useful for this:

.do xflag 3
kernafter R ; 66 ? 66

If the characters affected by these requests are also member of a regu-
lar kerning pair, the resulting added space is the sum of both definitions.
These requests are applied at the same places as kerning pairs, ie. they
have no effect if following or preceding a motion command, “\&” or line
margin, and they are additionally restricted to have no effect if the other
character is a space.

II

Hﬂ}’lglﬂg Cbﬂ}"ﬂ(l’fr.f

Since there are no tables for hanging characters in AFM files, val-
ues must be given explicitly in #roff source code using the “.lhang” and
“rhang” requests. Both accept a font specification followed by one or
more pairs of characters and values:

.do xflag 3

.ps 10
fp1Rgdrg_ pfb
Jhang R V =50 J —40
.thang R \(hy 80

Adjustments are given in units of 1/72 ooo inch multiplied by the ac-
tual point size, or 1/1000 of the em size when the line is printed. Thus
in this example, the left margin is shifted to the left by .5 points when the
leftmost letter is a “V”, and by .4 points when the leftmost letter is a “J”;
the right margin is shifted to the right by .8 points when the rightmost let-
ter is a hyphen.

Left margin adjustments are evaluated before the letters that fit on the
current line are computed, and can thus principally be of any length. In
contrast, right margin adjustments are evaluated after this computation is
finished, and the adjustment is simply added to the word space of the out-
put line. Thus a positive right adjustment that is large in relation to the
line length will cause visible holes, and a negative adjustment will ulti-
mately cause the words on the line to be printed over each other. This is
not a problem for the typical application of hanging punctuation for visu-
al alignment, though; if a line with eight word spaces is shifted in the ex-
ample above, each word space is enlarged by only 1/100 em.

Mathematical and other special characters
Special mathematical characters like “\(+—", greek letters like “\(*a”

and, with the “pslow” device, even the punctuation characters \(or \— \'

12

\""# <> @ \ * ~ are normally not chosen from the current font, but
are taken from the special font instead. (PostScript names (e.g. “\[num-
bersign]”, “\[less]”, “\[at]”) access characters from the current font.) The
«ro
.ps” request can be used to override this behavior. In particular, this is
useful to set mathematical text with a different font. To use Adobe Gara-

mond Premier Pro for greek letters and mathematical symbols:

.do xflag 3

fps math,greek,punct 1 R GaramondPremrPro otf
fp 2 I GaramondPremrPro-It otf

fallback I R

EQ

a A= pi {r sup 2}

.EN

Helper utilities

The otfdump utility shows the contents of an OpenType or TrueType
font file just as zroff interprets it. It emits an ASCII format that is readable
by humans and can also be used for further processing with shell scripts.
It is useful to retrieve lists of characters and features supported with the
font.

The shell script “stuff/showfont.sh” in the source code distribution uses
troff and possibly otfdump to print a map of all characters in an AFM,
OpenType, or TrucType font along with their PostScript names.

Limitations

dpost uses a method to embed CFF-based (PostScript-style) OpenType
fonts in PostScript documents that is only available with PostScript 3 in-
terpreters; older printing equipment that uses PostScript Level 2 or below
cannot handle such documents directly. The recommended workaround is
to convert the PostScript output to a PDF document and to print it us-

13

ing a PDF viewer or reverse conversion program. Also you may have to
update your copy of Ghostscript in order to create PDF files with proper
font embedding from such output.

Embedding TrueType fonts in PostScript documents requires Post-
Script 3 or PostScript Level 2 of at least version 2013.

troff only supports OpenType features that result in single-character sub-
stitutions insensitive of context (except for the “fi fl ff fi ” ligatures and
kerning which are enabled by default if possible). Also troff ignores any
features that are not mapped to the “DFLT” or “latn” languages in an

OpenType font.

14

	Title
	The basics
	Installing PostScript Type 1 fonts
	Installing OpenType or TrueType fonts
	Using OpenType features
	Using fonts with old-style numerals
	Using fonts with small capital letters
	Using a combination of expert and standard fonts for small capitals
	Using a combination of expert and standard fonts for old-style numerals
	Using the expert font for both small capitals and old-style numerals
	Using the expert font for ligatures
	Defining additional ligatures
	Choosing between multiple possible ligatures
	Combining different fonts
	Spacing out individual words
	Setting text in all-capital letters
	Pairwise kerning
	Kerning of a character in any combination
	Hanging characters
	Mathematical and other special characters
	Helper utilities
	Limitations

